Tech

Take a peek inside a flickering candle flame with these 3D-printed shapes

New research from MIT explores fire from a whole series of new perspectives. The research uses deep-learning approaches that extract the vibrational features of flames as flickering objects and, in turn, renders them into sounds and materials.

The 19th-century physicist Michael Faraday was known not only for his seminal experimental contributions to electromagnetism but also for his public speaking. His annual Christmas lectures at the Royal Institution evolved into a holiday tradition that continues today. One of his most famous Christmas lectures concerned the chemical history of a candle. Faraday illustrated his points with a simple experiment: He placed a candle inside a lampglass in order to block out any breezes and achieve “a quiet flame.” Faraday then showed how the flame’s shape flickered and changed in response to perturbations.

“You must not imagine, because you see these tongues all at once, that the flame is of this particular shape,” Faraday observed. “A flame of that shape is never so at any one time. Never is a body of flame, like that which you just saw rising from the ball, of the shape it appears to you. It consists of a multitude of different shapes, succeeding each other so fast that the eye is only able to take cognizance of them all at once.”

Now, MIT researchers have brought Faraday’s simple experiment into the 21st century. Markus Buehler and his postdoc, Mario Milazzo, combined high-resolution imaging with deep machine learning to sonify a single candle flame. They then used that single flame as a basic building block, creating “music” out of its flickering dynamics and designing novel structures that could be 3D-printed into physical objects. Buehler described this and other related work at the American Physical Society meeting last week in Chicago.

Read 17 remaining paragraphs | Comments