Tech

MIT scientists study spider web structure by translating it into music

Now you can walk through a virtual spider web, using VR headset and controllers to interact with a web sonification model.

A spider weaving its intricate web is a bit like a person composing a song, at least in the eyes of MIT materials engineer Markus Buehler, whose research involves translating web structure into musical melodies. Together with his collaborators, he has devised a way for humans to “enter” a 3D spider web and explore its structure both visually and aurally via a virtual reality setup. Buehler described the ongoing project during a talk at the (virtual) meeting of the American Chemical Society (ACS) this week.

The work may one day lead to a means of rudimentary communication with spiders in their own “language” of web vibrations, such as when they stretch a strand of silk while building a web or when the strands vibrate in response to a gust of wind or to the presence of trapped prey. “The spider lives in an environment of vibrating strings,” Buehler said during an online press conference. “They don’t see very well, so they sense their world through vibrations, which have different frequencies.”

As we’ve reported previously, several years ago, Buehler led a team of MIT scientists that mapped the molecular structure of proteins in spider silk threads onto musical theory to produce the “sound” of silk in hopes of establishing a radical new way to create designer proteins. The hierarchical elements of music composition (pitch, range, dynamics, tempo) are analogous to the hierarchical elements of a protein structure. Much like how music has a limited number of notes and chords and uses different combinations to compose music, proteins have a limited number of building blocks (20 amino acids) that can combine in any number of ways to create novel protein structures with unique properties.

Read 10 remaining paragraphs | Comments