Tech

A transistor made using two atomically thin materials sets size record

While graphene sheets can be large in length and width, their height is the same as a single carbon atom.

Enlarge / While graphene sheets can be large in length and width, their height is the same as a single carbon atom. (credit: Getty Images)

The ever-shrinking features of transistors etched in silicon have always required pushing the cutting edge of manufacturing technology. The discovery of atomically thin materials like graphene and carbon nanotubes, however, raised the prospect of replacing our manufacturing needs with the natural properties of these materials. There’s no need to etch a 1 nanometer feature into silicon if you could simply use a carbon nanotube that’s 1 nanometer wide.

And there have been some notable successes, such as a 1 nanometer gate made of a single carbon nanotube. But the work often involves a difficult process of getting the atomically thin materials in the right place to create a functional device. And the rest of the hardware is typically made of bulkier materials that are borrowed from more traditional transistor design.

A new paper released this week, however, describes a record-setting design that has the smallest transistor gate length yet reported. The record was set by the edge of a graphene sheet, meaning the gate is only a single carbon atom across. And, by using a second atomically thin material for a key component (plus a clever arrangements of parts), the team behind the design has made sure that the whole transistor is easy to make and relatively compact.

Read 12 remaining paragraphs | Comments